

What are plants?

- Producer
- Convert inorganic to organic
- Provide food
- Produce O₂
- CO₂ fixation

Photosynthesis

Photosynthesis is the process in which green plants absorb solar energy to make food from carbon dioxide and water.

Chlorophyll

Chlorophyll is the green pigment can absorb sunlight.

Photosynthesis

Glucose converted into starch

atmosphere

Where is the starch stored in plant?

stem

fruit

root

Starch stored in plant cell

Silpakorn University, Thailand

Requirements of photosynthesis

- Sunlight
- Chlorophyll
- Water
- Carbon dioxide Oxygen Carbon dioxide www.sciencewithme.com Water

Importance of photosynthesis

Transport system in plant

Wilting

water loss through the aerial parts of the plant exceeds water absorption by roots.

Transpiration

Transpiration is the evaporation of water from the aerial part of plant.

Water loss in plant
90% by stomata
9% by cuticle
1% by photosynthesis

Stomata

Stomata are pore in the leaves and stem.

Monocotyledons : found on both sides of leaves

Dicotyledons : found in lower sides of leaves

The main function of Stomata

 To allow gases to diffuse in and out of the leave.

Affect factors the rate of Transpiration

- Light
- Temperature
- Relative humunity
- Wind speed
- Water availability
- altitude

The roles of transpiration

- Transport Water and Mineral
- Prevent the heat from sunlight

Vascular tissue of a plant

Elizabeth Morales

Xylem

To transport
 water and mineral
 from the root to
 the stem and
 leaves.

Phloem

Transport
 synthesized
 food
 substances
 from one part
 of the plant to
 another.

the pathway of water in plant

root

stem

leaf

Transport of synthesized food substances in phloem

Location of xylem and phloem

root

Location of xylem and phloem

stem

Location of xylem and phloem

leaf

Structure of flower

Structure of flower

- A flower may comprise four organs made of modified leaves:
- Sepals enclose the flower.
- Petals may be brightly colored to attract pollinators.
- Stamens produce pollen that contain sperm.
- Carpels produce ovaries that contain eggs.

Type of flower

A complete flower has all four basic floral organs.

A perfect flower contains both male and female structures.

An imperfect flower may be

- staminate and contains no carpels, or
- carpellate and contains no stamens.

 Pollination is when the pollen lands on the female part of a flower. In most plants the stigma needs to receive pollen from another flower.

Pollination

Insect Pollinated vs Wind Pollinated

Insect pollinated

- When insects like bees or flies visit flowers and pollen sticks onto their hairy legs. When they visit another flower the pollen rubs off on its stigma.
- Insect pollinated flowers may have large brightly coloured petals, large pollen grains, and be scented.

Wind pollinated

- The wind carries pollen from one plant to another.
 Wind pollinated flowers may have small petals, no scent, a lot of small light pollen grains on long, droopy stamens.
- Grass pollen is carried by wind. Grass has feathery stigmas to catch the pollen.

Difference between Self Pollination and Cross Pollination

Self Pollination

- When pollen grains from a flower are carried to the stigma of the same flower or on the other flower of the same plant
- Flowers exhibiting self pollination, sometimes do not need any pollinating agent.
- From the genetical as well as quality point of view
 Self pollination is less preferable.

Cross Pollination

- When the pollen grains from a flower are carried to the stigma of the flower on other plant
- Flowers exhibiting cross pollination need some pollinating agents.
- From the genetical as well as quality point of view Cross pollination is better and more preferable than self pollination

Fertilization in plant

Fertilization in plant

- Before fertilization can occur, the pollen grain on the stigma has to germinate.
- Each pollen grain contains a tube cell and a generative cell.
- The tube cell forms a pollen tube that grows down inside the style to an ovule.
- The generative cell divides to form two sperm that move down the pollen tube.
- The pollen tube provides a pathway for the sperm to reach the egg cell in the ovule.
- One sperm fertilizes the egg cell and together they form the zygote.
- The other sperm unites with the polar bodies in the ovule and together they form the nutritive tissue for the zygote.

Pollen tube

100 um

Formation of fruit

Type of fruit

© 2011 Pearson Education, Inc.

Seed Germination

Conditions Needed for Seed germination

- Water
- Oxygen
- Temperature
- Light or darkness

vegetative reproduction

- (Vegetative propagation)
- is a form of asexual reproduction in plants. It does not involve flowers, pollination and seed production.
- Instead, a new plant grows from a vegetative part, usually a stem, of the parent plant.

Bulbs

 Bulbs consist of very short stems with closely packed leaves arranged in concentric circles round the stem.

Corms

 Corms also have a short stem but in this case it is the stem itself which swells and stores food. The circular leaves form only papery scales.

- Rhizomes (root)
- Rhizomes are stems which grow horizontally under the ground. In some cases the underground stems are swollen with food reserves.

- Stem tubers
- Stem tubers are enlarged, fleshy underground stems.

- Stolons
- stems form a rather different type of runner in which the main shoot forms the new individual.

Root

Leave

Biotechnology

Biotechnology is defined as the application of biological process to improve human health and food production.

Biotechnology

Genetic engineering is a process in which DNA technology is used to introduce desirable traits into organisms

Genetic engineering

GMOs

genetically modified organisms (GMOs)

is organisms that have changed genetic by genetic engineering

Chemical

Medicine

Food industry

BIOTECHNOLOGY

industry

Agriculture

Biotechnology in agriculture

- Increase food yields
- More nutrition
- More resistance to droughts, pests, water extremes and diseases
- Reduce pollution from pesticides

Bt corn

Bt cotton

Bt Cotton

Biotechnology in industry

 Beer, cheese, bread, antibiotic, detergent and textile

Use enzyme from microbiology

Biotechnology in food

More nutrition

Soybean and maize have higher protein

Biotechnology in food

higher protein in potato

Golden rice

Rice contain vitamin A

Canola

Biotechnology in food

Fruit and vegetable stay fresh longer

Biotechnology in medicine

Produce new drugs and medicine

Biotechnology in medicine

Field diseases by gene

DNA fingerprinting

DNA fingerprinting

